
D-AL94 937 NR COMPILER VALIDATION SUMMARY REPORT: SIEMENS NOG /
SIEMENS 95S2666 ADR CON. U)
INDUSTRIERNLNGN-UETRIESOESELLSCNAFT N I H OTTOURUN

UNCLASSIFIED (GERMN .. 26 FED 87 F/O 12/3 NL

mhmmmmhhmhhl

UAU
I..

1.4~

I~~ liii 1.W-I

011C IFLE WO

AVF Control Number: AVF-VSR-009

"MAda COMPILER
') VALIDATION SUMMARY REPORT:

rSiemens AG

Siemens BS2000 Ada Compiler, Version].0
gSiemens 7.570P

Q
Completion of On-Site Testing:

87-02-26

Prepared By:
Industrieanlagen-Betriebsgesellschaft mbH, Dept. SZT

Einsteinstrasse 20
D-8012 Ottobrunn

Federal Republic of Germany

Prepared For:

Ada Joint Program Office
United States Department of Defense

Washington, D.C.

DTICSELECTEM
4. EC 2 9 1987 iS H U~

H

Ada .s a registered trademark of the United States
Government (Ada Joint Program Office).

DISTRIBUMiON STATi--A-I

Aprovod fol public r-I,," 87 12 14 165

UNCLASSIFIED
SECURITY CLASSIFICATION 0

r
!HI PAGE (We'DarjE,re~ed)

REPORT DOCUMENTATION PAGE READ -STKVCTON
BEFORE r-LT:N ORM.

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (andSubtitle) 5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Sum;ary Report: 26 Feb.'E7 to 26 Fet.'88
Siemens AG Siemens BS2000 Ada Compiler, Version 1.0

Siemens 7.5
7
0p 6. PERFORMING ORG. REPORT NUMBER

7 AUTHOR(s) .8. CONTRACT OR GRANT NUMBER(s)~Inglustr.-Betrieb.

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Industr.-Betrieb., mbH, Dept. SZT AREA & WORK UNIT NUMBERS

Einsteinstrasse 20, D-8012 Ottobrunn
Fed. Rep. Germany

11. CONTROLLING OFFICE NAME AND ADDRESS

Ada Joint Program Office 26 Feb.'87
United States Department of Defense IJ. NUMBSH UI PAGt!

Washington, DC 20301-3081ASD/SIOL 35

14. MONITORING AGENCY NAME & ADDRESS(If differentf.,rn Controlling Office) 15. SECURITY CLASS (of this report)

Industr.-Beitrieb.. UNCLASSIFIED
15a. R SUJFICATION/DOWNGRADING

N/A

16. DISTRIBUTION STATEMENT (ofthisReport)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (ofthe abstract entered in Block 20. If different from Report)

UNCLASSIFIED

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and ident, fy, by block number)

See Attached.

DD um 1473 EDITION OF 1 NOV 65 IS OBSOLETE

I JAN 73 S/N 0102-LF-O14-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

AVF Control Number: AVF-VSR-009

*4
Ada COMPILER

VALIDATION SUMMARY REPORT:
Siemens AG

Siemens PS2000 Ada Compiler, Version 1.0
Sientens 7.570P

Completion of On-Site Testing:
87-02-26

Prepared By:
Industrieanlagen-Betriebsgesellschaft mbH, Dept. SZT

Einsteinstrasse 20100
D-8012 Ottobrunn 0

Federal Republic of Germany

Prepared For: ACeeSsfon For
Ada Joint Program OfficeF

United States Department of Defense FI GiA&I
Washington, D.C. -l . I:

V

V Oijtr~bkt! -;a.

'E t n' °

Avia'bu i+ (2.

Ada i-s a registered trademark of the United States
Government (Ada Toint Program Office).

*t

m" 6

) -2-

Ada Compiler Validation Summary Report:

Compiler Name: Siemens BS2000 Ada Compiler, Version 1.0

Host:
Siemens 7.570P under
BS2000,
Version 7.6

Target:
Siemens 7.570P under
BS2000,
Version 7.6

Testing Completed 87-02-26 Using ACVC 1.8

This report has been reviewed and is approved.

I~~~, Dept SZT
Dr. H. Hummel
Einsteinstrasse
D 8012 Ottobrunn

Fed. p.of Germany

Kda Validation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria VA

Ada oint Program Office
Virginia L. Castor
Director
Department of Defense
Washington DC

Ada is a registered trademark of the United States
Government (Ada Joint Program Office).

-3-

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results
and conclusions of validation testing performed on the Sie-
mens BS2000 Ada Compiler, Version 1.0, using Version 1.8 of
the Ada Comoiler Validation Capability (ACVC). The Siemens
RS2000 Ada Cnmpiler is hosted on a Siemens 7.570P operating
under BS2000, Version 7.6. Programs processed by this com-
oiler may be executed on a Siemens 7.570P operating under
BS2000, Version 7.6.

On-site testing was performed 87-02-25 through 87-02-26 at
Siemens AG in D-8000 Mdinchen-Neuperlach, under the direction
of the Industrieanlagen-Betriebsgesellschaft mbH, Dept. SZT
(AVF), according to Ada Validation Organization (AVO) poli-
cies and procedures. The AVF identified 2210 of the 2399
tests in ACVC Version 1.8 to be processed during on-site
testing of the compiler. The 19 tests withdrawn at the time
of validation testing, as well as the 170 executable tests
that make use of floating-point precision exceeding that
supported by the implementation, were not processed. After
the 2210 tests were processed, results for Class A, C, D, or
E tests were examined for correct execution. Compilation
listings for Class B tests were analyzed for correct diag-
nosis of syntax and semantic errors. Compilation and link
results of Class L tests were analyzed for correct detection
of errors. There were 37 of the processed tests determined
to be inapplicable. The remaining 2173 tests were passed.

The results of validation are summarized in the following

table:

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 14

Passed 102 250 334 243 161 97 134 262 124 32 218 216 2173

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 14 75 86 4 0 0 5 0 6 0 0 17 207

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable
conformity to ANSI/MIL-STD-1815A Ada.

Ada is a registered trademark of the United States
Government (Ada Joint Program Office).

4

TABLE OF CONTENTS

Page

CHAP-ER 1 INTRODUCTION 5

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 6
1.2 USE OF THIS VALIDATION SUMMARY REPORT . 6
1.3 REFERENCES 7
1.4 DEFINITION OF TERMS 7
1.5 ACVC TEST CLASSES 8

CHAPTER 2 CONFIGURATION INFORMATION II

2.1 CONFIGURATION TESTED 11
2.2 IMPLEMENTATION CHARACTERISTICS 11

CHAPTER 3 TEST INFORMATION 16

3.1 TEST RESULTS 16
3.2 SUMMARY OF TEST RESULTS BY CLASS 16
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 16
3.4 WITHDRAWN TESTS 17
3.5 INAPPLICABLE TESTS 17
3.6 SPLIT TESTS 18
3.7 ADDITIONAL TESTING INFORMATION 19
3.7.1 Prevalidation 19
3.7.2 Test Method 19
3.7.3 Test Site 20

APPENDIX A COMPLIANCE STATEMENT 21

APPENDIX B APPENDIX F OF THE Ada STANDARD 23

APPENDIX C TEST PARAMETERS 31

APPENDIX D WITHDRAWN TESTS 35

35.

%I R kF I%

-5-

CHAPTER I

INTRODUCTION

1-°

This Validation Summary ReporttVSR- describes the extent to
which a specific Ada compiler conforms to the Ada Standard,
A4&-/MIL-STD--]85A_ This report explains all technical
terms used within it and thoroughly reports the results of
testing this compiler using the Ada Compiler Validation
Capability *-AGVC)' An Ada compiler must be implemented
according to the Ada Standard, and any implementation-
dependent features must conform to the requirements of the
Ada Standard. The Ada Standard must be implemented in its
entirety, and nothing can be implemented that is not in the
Standard.

Even though all validated Ada compilers conform to the Ada
Standard, it must be understood that some differences do
exist between implementations. The Ada Standard permits
some implementation dependencies -- for example, the maximum
length of identifiers or the maximum values of integer
types. Other differences between compilers result from
characteristics of particular operating systems, hardware,
or implementation strategies° All of the dependencies
observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test
results produced during validation testing. The validation
process includes submitting a suite of standardized tests,

the ACVC, as inputs to an Ada compiler and evaluating the
results.,The purpose of validating is to ensure conformity

of the compiler to the Ada Standard by testing that the com-
piler properly implements legal language constructs and that
it identifies and rejects illegal language constructs. The
testing also identifies behavior that is implementation
dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks
at compile time, at link time, and during execution.

Ae % %

-6-

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

7ns VSR documents the results of the validation testing
performed on an Ada compiler. Testing was carried out for

the following purposes:

To attempt to identify any language constructs sunoorted
by the compiler that do not conform to the Ada Standard

To attempt to identify any unsupported language con-
structs required by the Ada Standard

To determine that the implementation-dependent behavior
is allowed by the Ada Standard

Testing of this compiler was conducted by the AVF according
to policies and procedures established by the Ada Validation

Organization (AVO). On-site testing was conducted from 87-
02-25 through 87-02-26 at Siemens AG in D-8000 Minchen-
Neuoerlach.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating coun-
try, the AVO may make full and free public disclosure of
this report. In the United States, this is provided in
accordance with the "Freedom of Information Act" (5 U.S.C.
/552). The results of this validation apply only to the com-
outers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this
report do not represent or warrant that all statements set
forth in this report are accurate and complete, or that the
subject compiler has no nonconformities to the Ada Standard
other than those presented. Copies of this report are avail-
able to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Industrieanlaqen-Betriebsqesel lschaft mbH, Dept. SZT
Einsteinstrasse 20

D-8012 Ottobrunn
Federal Republic of Germany

F ML dtFV.A F IL

-7-

Puestinns reaardinq this report or the validation test
results should be directed to the ANIF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beaureqard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Proqramminq Language,
ANSI/MIL-STD-]815A, FEB 1983.

2. Ada Validation Organization: Policies and Procedures,
MITRE Corporation, JUN 1982, PB 83-110601.

3. Ada Compiler Validation Capability Imolementers'
Guide, SofTech, Inc., DEC 1984.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set
of programs that evaluates the conformity of a
compiler to the Ada language specification,
ANSI/MIL-STD-1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of
this report, the AVF is responsible for con-
ducting compiler validations according to
established policies and procedures.

AVO The Ada Validation Organization. In the con-
text of this report, the AVO is responsible
for setting procedures for compiler valida-
tions.

Compiler A processor for the Ada language. In the con-
text of this report, a compiler is any
language processor, including cross-compilers,
translators, and interpreters.

Failed test A test for which the compiler generates a
result that demonstrates nonconformity to the
Ada Standard.

-8 - r

Host The comnuter on which the c.mniler res iles.

Inanplicable A test that uses features of the lanquaqe that
test a comniler is not required to stiport or may

leqitimately support in a way other than the
one exnected by the test.

Passed test A test for which a comp ler generates the
exnected result.

T arqet The comnuter for which a comni]er qenerates
code.

Test A program that checks a comniler's conformity
reqardinq a particular feature or features to %
the Ada Standard. In the context of this
renort, the term is used to designate a single
test, which may comprise one or more files.

Withdrawn A test found to be incorrect and not used to
test check conformity to the Ada language snecfi-

cation. A test may be incorrect because it
has an invalid test objective, fails to meet
its test objective, or contains illegal or
erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACWC.
The ACVC contains both legal. and illegal Ada programs struc- T

tured into six test classes: A, B, C, D, E, and r. The first
letter of a test name identifies the class to which it
belongs. Class A, C, D, and E tests are executable, and spe-
cial program units are used to report their results during
execution. Class B tests are expected to produce compilation

errors. Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be success-
fully compiled and executed. However, no checks are ier-
formed during execution to see if the test objective has
been met. For example, a Class A test checks that reserved
words of another language (other than those already reserved
in the Ada language) are not treated as reserved words by an
Ada compiler. A Class A test is passed ;f no errors are
detected at compile time and the program executes to produce
a PASSED message.

Class B tests check that a compiler detects illegal languaqe

usage. Class B tests are not executable. Each test in this
class is compiled and the resulting compilation listing is 1

examined to verify that every syntax or semantic error in
the test is detected. A Class B test is passed if every

illeal construct that it contains is detected by the rn-
ni !er.

Class C tests check that leqal Ada proqrams can be correctly
compiled and executed. Each Class C test is self-checkinq
and produces a PASSED, FAILED, or 1OT APPLICABLE message
indicating the result when it is executed.

Class 1) tests check the compilation and execution capacities
of a compiler. Since there are no capacity requirements
placed on a compiler by the Ada Standard 4or some parameters
-- for example, the number of identifiers permitted in a
compilation or the number of units in a library -- a com-
piler may refuse to compile a Class D test and still be a
conforming compiler. Therefore, if a Class D test fails to
compile because the capacity of the compiler is exceeded,
the test is classified as inapplicable. If a Class D test
compiles successfully, it is self-checking and produces a
PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLI-
CABLE, PASSED, or FAILED message when it is compiled and
executed. However, the Ada Standard permits an implementa-
tion to reject programs containing some features addressed
by Class E tests during compilation. Therefore, a Class F
test is passed by a compiler if it is compiled successfully
and executes to produce a PASSED message, or if it is
rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illeqal Ada p-ograms
involving multiple, separately compiled units are d _ected
and not allowed to execute. Class L tests are compiled
separately and execution is attempted. A Class L test
passes if it is rejected at link time -- that is, an attempt
to execute the main program must generate an error message
before any declarations in the main program or any units
referenced by the main program are elaborated.

Two library units, the package REPORT and the procedure
CHECK FILE, suoport the self-checking features of the exe-
cutable tests. The package REPORT provides the mechanism by
which executable tests report PASSED, FAILED, or NOT APPLI-
CABLE results. It also provides a set of identity functions
used to defeat some compiler optimizations allowed by the
Ada Standard that would circumvent a test objective. The
procedure CHECK FILE is used to check the contents of text
files written by some of the Class C tests for chapter 14 of
the Ada Standard. The operation of these units is checked by
a set of executable tests. These tests oroduce messages that
are examined to verify that the units are operating
correctly. If these units are not operating correctly, then
the validation is not attempted.

The text of the tests in the ACVC follow conventions that

N ..

- 10 -

are intended to ensure that the tests are reasonably port-
able without mo.ification. For examole, the tests make use
of only the bas .c set of 55 characters, contain lines with a
maximum length of 72 characters, use small numeric values,
and place features that may not be supported by all imple-
mentations in senarate tests. However, some tests contain
values that require the test to be customized according to
implementation-snecific values -- for examrle, an illegal
file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly orocess each of the tests in the
suite and demonstrate conformity to the Ada Standard by
either meeting the pass criteria given for the test or by
showing that the test is inapplicable to the implementation.
Any test that was determined to contain an illegal language
construct or an erroneous language construct is withdrawn
from the ACVC and, therefore, is not used in testing a com-
piler. The tests withdrawn at the time of validation are
given in Appendix D.

.1*V

"4p

~- ii -

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was
tested under the following configuration:

Compiler: Siemens BS2000 Ada Comoiler, Version 1.0

ACVC Version: 1.8

Certificate Expiration Date: 88-05-04

Host Computer:

Machine: Siemens 7.570P

Operating System: BS2000
Version 7.6

Memory Size: 7 MB virtual/32 MB real

Target Computer:

Machine: Siemens 7.570P

Operating System: BS2000
Version 7.6

Memory Size: 7 MB virtual/32 MB real

The disk system of the host and target computer consisted of
24 Siemens disks D3475 with 757 MB each and 3 Siemens disks
D3468 with 267 MB each.

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine
the behavior of a compiler in those areas of the Ada Stan-
dard that permit implementations to differ. Class D and E
tests specifically check for such implementation differ-
ences. However, tests in other classes also characterize an
implementation. This compiler is characterized by the fol-
lowing interpretations of the Ada Standard:

. ~ q% ~ % ~ '5

12 -

Canacities.

-he compiler correctly processes tests containing 1r~n

statements nested to 65 levels, block statements nested
to 65 levels, and recursive procedures separately corn-
oiled as subunits nested to 17 levels. It correctly
orocesses a compilation containing 723 variables in the
same declarative nart. (See tests D55A03A..11 (8 tests),
D56001B, D64005E..G (3 tests), and D29002K.)

Universal inteqer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSTEPI.MAX INT.
This implementation does not reject such calculations and
processes them correctly. (See tests D4AO02A, D4A00213,
D4AO04A, and D4AO04B.)

Predefined types.

This implementation supports the additional predefined
type SHORT INTEGER in the package STANDARD. (See tests
B86001C and B86001D.)

Based literals.

An implementation is allowed to reject a based literal
with a value exceeding SYSTEM.MAX INT during compilation,
or it may raise NUMERIC ERROR or CONSTRAINT ERROR during
execution. This implementation raises CONSTRAINT ERROR
during execution. (See test E24101A.)

Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAItrT ERROR for an array having a 'LENGTH that
exceeds STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT.

0 A packed BOOLEAN array having a 'LENGTH exceeding

INTEGER'LAST raises NUMERIC ERROR when the array type is
declared. (See test C52103X.T

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERIC ERROR when the

array type is declared. (See test C52104Y-.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However,

~~WIVL~~FtKJW I.. V ~~~

- 13 -

lenqths must match in array slice assignments. This
implementation raises NUMERIC ERROR when the array type
is declared. (See test E52103Y.T

In assigninq one-dimensional array types, the expression
appears to be evaluated in its entirety before
CONSTRAINT ERROR is raised when checking whether the
expression's suhtyne is comnatible with the target's sub-
type. In assigning two-dimensional array types, the
expression does not appear to be evaluated in its
entirety before CONSTRAINT ERROR is raised when checking
whether the expression's subtype is compatible with the
target's subtype. (See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to
either accept or reject an incomplete type with discrim-
inants that is used in an access type definition with a
compatible discriminant constraint. This implementation
accepts such subtype indications. (See test E38104A.)

In assigning record types with discriminants, the expres-
sion appears to be evaluated in its entirety before
CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's sub-
type. (See test C52013A.)

Aggregates.

In the evaluation of a multi-dimensional aggregate, all
choices appear to be evaluated before checking against
the index type. (See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggre-
gates, all choices are not evaluated before being checked
for identical bounds. (See test E43212B.) All choices are
evaluated before CONSTRAINT ERROR is raised if a bound in
a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

Functions.

An implementation may allow the declaration of a parame-
terless function and an enumeration literal having the
same profile in the same immediate scope, or it may
reject the function declaration. If it accepts the func-
tion declarations, the use of the enumeration literal's
identifier denotes the function. This implementation
rejects the declarations. (See test E66001D.)

NiJA PLA 1Lr K-Y% 1v NA1L7L NJc% w rK rK r rN 15--. 17N I.N .' rK~'A XX Ykr K

- 14 -

Renresentation clauses.

The Ada Stanciar does not require an implementation to
support representation clauses. If a representation
clause is not suoported, then the implementation must
reject it. While the operation of representation clauses
is not chec ei by Version 1.8 of the ACVC, they are used
in testina other language features. This imnlementation
rejects 'SIZE and 'STORAGE SIZE for tasks, 'STORAGE SIZE
for collections, and 'SMALL clauses. Enumeration
representation clauses appear not to be supported. (See
tests C55B16A, C97B62A, C87B62B, C87B62C, and BCI002A.)

Pragmas.

The pragma INLINE is not supported for procedures. The
pragma INLINE is not supported for functions. (See tests
CA3004E and CA3004F.)

Input/output.

The package SEQUENTIAL 10 cannot be instantiated with
unconstrained array types and record types with discrim-
inants. The package DIRECT 10 cannot be instantiated
with unconstrained array types and record types with
discriminants without defaults. (See tests AE2101C,
AE2101H, CE2201D, CE2201E, and CE2401D.)

An existing text file can be opened in OUT FILE mode, can
be created in OUT FILE mode, and can be created in
INFILE mode. (See test EE3102C.)

More than one internal file can be associated with each
external file for text I/O for reading only. (See tests
CE3111A..E (5 tests).)

More than one internal file can be associated with each
external file for sequential I/O for reading only. (See
tests CE2107A..F (6 tests).)

More than one internal file can be associated with each
external file for direct I/O for reading only. (See tests
CE2107A..F (6 tests).)

Temporary sequential files are given a name. Temporary
direct files are given a name. Temporary files given
names are deleted when they are closed. (See tests
CE2108A and CE2]08C.)

R I

-15-

Generics.

Generic suborogram declarations and bodies can be com-
piled in separate compilations. (See test CA2009F.) Gen-

eric package declarations and bodies can he compiled in
separate compilations. (See tests CA2009C and RC3205D.)

'S

- 16 -

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.8 of the ACVC contains 2399 tests. When val idation
testing of Siemen!; 8S2000 Ala Comniler was performed, 19
tests had been withdrawn. The remaining 2380 tests were
notentiallv applicable to this validation. The AVF deter-
mined that 207 tests were inapplicable to this implementa-
tion, and that the 2173 applicable tests were passed by the
imolementation. There were no failed tests.

The AVF concludes that the testinq results demonstrate
acceptable conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 67 864 1170 17 11 44 2173

Failed 0 0 0 0 0 0 0

Inapplicable 2 3 198 0 2 2 207

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 14

Passed 102 250 334 243 161 97 134 262 124 32 218 216 2173

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 14 75 86 4 0 0 5 0 6 0 0 17 207

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

- 17 -

3.4 WITHDRAWN TESTS

The followina 19 tests were withdrawn from ACVC Version 1.8
at the time of this validation:

C321 1IA C41404A B74101B
B33203-7 B515116A C87B50A
C34018A C4900qA C92005A
C35904A B49006A C940ACA

B37401A Y4AO10C CA3005A..D (4 tests)
BC3204C

See Appendix D for the reason that each of these tests was
withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not anply to all compilers because they make
use of features that a compiler is not required by the Ada
Standard to suoport. Others may depend on the result of
another test that is either inapplicable or withdrawn. For
this validation attempt, 207 tests were inapplicable for the
reasons indicated:

C34001E, B52004D, B55B09C, and C55B07A use LONG INTEGER
which is not suoported by this compiler.

C34001F and C35702A use SHORTFLOAT which is not sup-
ported by this compiler.

C34001G and C35702B use LONGFLOAT which is not supported
by this compiler.

C55B16A makes use of an enumeration representation clause
containing noncontiguous values which is not supported by
this compiler.

B8600lDT requires a predefined numeric type other than
those defined by the Ada language in package STANDARD.
There is no such type for this implementation.

C86001F redefines package SYSTEM, but TEXT 10 is made
obsolete by this new definition in this implementation
and the test cannot be executed since the package REPORT
is dependent on the package TEXT IO.

C87B62A..C (3 tests) use length clauses which are not
supported by this compiler. The length clause is rejected
during compilation.

., .r '

Irv VW

MC\3)O F, EA30,()I. , ani 1,A3004A use IN'IFT' praqma fnr nro-
-e'ures which is not sunp rtel bv this compiler.

CA300F, EA3001D, and LA3004B use INLINE praqma for func-
tions which is not supported by this comiler.

AF21OlC, CE?201D, and CE220JE use an instantiation nf

packaqe SEOt E N TAL 10 with unconstrained array types
w.,hich is not sunorted by this compiler.

AE21OH and CE240ID use an instantiation of package
DIRECT 10 with unconstrained array types which is not
sunported by this compiler.

CE2107B..E (4 tests), CE2IlOR, CE21I]D, CE2IlfI1,
CE3111B..E (A tests), and CE3114B are inapplicable
because multiple internal files cannot be associated with
the same external file. The proper exception is raised
when multiple access is attempted.

* The following 170 tests require a floating-point accuracy
that exceeds the maximum of 15 supported by the implemen-
ta tion:

C24113L..Y (14 tests)
C35705L..Y (14 tests)
C35706L..Y (14 tests)
C35707L..Y (14 tests)
C35708L..Y (14 tests)
C35S02L..Y (1.4 tests)
C45241L..Y (14 tests)

J C45321L..Y (14 tests)
C45421L. .Y (14 tests)w
C45424L..Y (14 tests)

. C4552].L..Z (15 tests)
C45621L..Z (15 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in
a Class B test because of compiler error recovery, then the
test is split into a set of smaller tests that contain the

undetected errors. These splits are then compiled and exam-
ined. The splitting process continues until all errors are
detected by the compiler or until there is exactly one error
per split. Any Class A, Class C, or Class E test that can-
not be compiled and executed because of its size is split
into a set of smaller subtests that can be processed.

-VO!'

WAI1 XbM-, WV _1 Iv J% i's ;.I J% JU 'W VW VIA WVMV 'N ~~)VJ~.yy y ~ ~ . y~

Solits were required for 3 Class 13 tests.

B22003A-S] B67001C-S5
.36700IC-S] B6700]C-$6
B67001C-S2 B6700]C-S7
T167001C-S3 B95032A-Sl
B67001C-S4 B95032A-S2

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version
1.8 oroduced by the Siemens BS2000 Ada Compiler was submit-
ted to the AVF by the applicant for review. Analysis of
these results demonstrated that the compiler successfully
passed all applicable tests, and the compiler exhibited the
expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the Siemens BS2000 Ada Compiler using ACVC Ver-
sion 1.8 was conducted on-site by a validation team from the
AVF. The configuration consisted of a Siemens 7.570P operat-
ing under BS2000, Version 7.6 with the target being the same
machine.

The body of the package REPORT was modified so that a time
stamp for each executed test will be added.

A magnetic tape containing all tests except for withdrawn
tests and tests requiring unsupported floating-point preci-
sions was tak en on-site by the validation team for process-
ing. Tests that make use of implementation-specific values
were customized before being written to the magnetic tape.
Tests requiring splits during the prevalidation testing were
included in their split form on the magnetic tape except for
B95032A which was checked by the validation team.

The contents of the magnetic tape were loaded directly onto
the host computer using the BS2000 utility SYSUPD.

After the test files were loaded to disk, the full set of
tests was compiled on the Siemens 7.570P, and all executable
tests were linked and executed on the target (the same
machine).

The compiler was tested using command scripts provided by
Siemens AG and reviewed by the validation team.

- 20 -

All tests were r:n using these command scriots. The tests
CE3201A, CE3203\, CE3301], CE3402B, CE3405B, CE3409F,
CE3410F, and CE34122 whose self-documenting special messages
to STANDARD OUTPUT require a manual check were also run in
batch mole. The listings produced of these eight tests were
printed on naner bv a specific system command procedure.

The following options were in effect for testing:

Ontion Effect
70 Suppress end messages of the compiler

412 Check if instantiations are
necessary at link time

566 Suppress listing by Ada linker of all
linked Ada compilation units

Tests were compiled, linked, and executed (as appropriate)
using a single host computer. In order to minimize disk
access and thereby enhance throughput, exact copies of the
compiler resided on three disk units. Up to eleven batch
jobs ran simultaneously each using one of the three Ada com-
pilers. Test output, compilation listings, and job logs
were captured on magnetic tape and archived at the AVF. The
listings examined on-site by the validation team were also
archived.

3.7.3 Test Site

The validation team arrived at Siemens AG in D-8000
M nchen-Neuperlach on 87-02-25 and departed after testing
was completed on 87-02-26.

4N

1%

% % i%

6 - L . .%I,.. -,tn -m ._ . A J m . '.., ,.

- 21] -

APPENDIX A

DECLARATION OF COFORMANCF

Compiler Implemerter: Siemens AG, Munchen

Ada Validation Facility: IABG m.b.H., Ottobrunn

Ada Compiler Validation Capability (ACVC) Version: 1.8

Base Configuration

Base Compiler Name: Siemens BS2000 Ada Compiler Version: 1.0

Host Architecture ISA Siemens 7.570P OS&VER No: BS2000 / V7.6

Target Architecture ISA: Siemens 7.570P OS&VER No: BS2000 / V7.6

Derived Compiler Registration

Derived Compiler Name: Siemens BS2000 Ada Compiler Version: 1.0

(same as above)

Host Architecture ISA: 7.53 1, 7.536, 7.54 1, 7.55 1,

7.530, 7.550, 7.560,

7.561, 7.571, 7.550,

7.560, 7.570, 7.580, 7.590,

7.700

OS&VER No: BS2000 / V7.5, V7.6, V8.0, V8.5, V9.0

Target Architecture ISA: same as host

OS&VER No: same as host

The above-mentioned compiler executes properly without any modifications on

each of these host architectures in combination with each of the BS2000-versions

listed above.

Implementer's Declaration

I, the undersigned, representing Siemens A.G. have implemented no deliberate

extensions to the Ada Language Standard ANSI/MIL-STD-1815A in the compiler
listed in this declaration. I declare that Siemens A.G.is the owner of record of the

Ada language compiler listed above and, as such, is responsible for maintaining

said compiler in conformance to ANSI/MIL-STD-1815A. All certificates and

registrations for Ada language compilers listed in this declaration shall be made

only in the owner's corporate name.

Siemens Aktiengesellschaft

-- 7

,Spa . '. '.,,,, .- '.% ' " ' ,-.-,"3'/ ,',' ' ',,- ' % 3''.,, ' '''-.,,,, ' .. , ,_" ","-",','. ,.

- 22 -

Owner's Declaration

I, the undersigned, representing Siemens A.G. take full responsibility for

implementation and maintenance of the Ada compiler listed above, and agree

to the public disclosure of the final Validation Summary Report. I further agree

to continue to comply with the Ada trademark policy, as defined by the Ada

Joint Program Office. I declare that all of the Ada language compilers listed, and

their host/target performance are in compliance with the Ada Languages

Standard ANSI/MIL-STD-1815A. I have reviewed the Validation Summary Report

for the compiler and concur with the contents.

Siemens Aktiengesellschaft

.ej %

- 23 -

%A rArA.

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementatinn lenendencies corresnond to I
implementation-dependent pragmas, to certain machine-
dependent conventions as mentionedr in chapter 13 of MIL-
STD-l]15A, and to certain allowed restrictions on represen-
tation clauses. The implementation-dependent characteristics
of the Siemens B2000 Ad]a Compiler, Version 1.0, are
described in the followinq sections which discuss topics in
Anpendix F of the Ada Language Reference Manual (ANSI/MIL-
STD-1815A). Implementation-specific portions of the package
STANDARD are as follows:

package STANDARD is

type INTEGER is range -2147 483 647 .. 2 147 483 647;
type SHORT INTEGER is range -32'68 .. 32767;--

type FLOAT is digits 15 range -241.0#E212 .. 2#1.0#E212;

type DURATION is delta 21.0E-14 range -131071.0 .. 131071.0;
-- DURATION'SMALL = 2f1.OflE-14.

end STANDARD;

Implementation-dependent Characteristics

This appendix summarizes all implementation-dependent
characteristics of the Siemens BS2000 Ada Compiler. It
describes:

(1) The form, allowed places, and effect of every
implementation-dependent pragma.

(2) The name and tie type of every implementation-dependent
attribute.

(3) The specification of the package SYSTEM.

(4) The list of all restrictions on representation clauses.

(5) The conventions used for any implementation-generated
name denoting implementation-dependent components.

(6) The interpretation of expressions that appear in address
clauses, including those for interrupts.

"r r" e-" 'e -4 -1 "e ,0 "d, "e

- 24 -

(7) Any restriction -n tinchecke(I conversions.

(8) Any impl ementat i -n-IQTenlen t cracteristics the
innut-output nackaqes.

1. Implementation-dependent Pragmas

There are nn implementition-drepenent nraqmas.

.The only lanquaqe name accepted by pragma INT'RFACE is
ASS F1.3LER. The only nriority accepted by pragma PRIORITY is
represented by an expression of the static value 0 (cf. the
-definition of the subtype PRIORITY in package SYSTEM).

2. Implementation-dependent Attributes

There are no implementation-dependent attribites.

3. Specification of the Package SYSTEM

package SYSTEM is
type ADDRESS is new INTEGER;
type NAME is (BS2000);
SYSTEM NAME : constant NAME := BS2000;
STORAGE UNIT : c instant := 8;
MEMORY SIZE : constant : 4000000;
-- System-Dependent Named Numbers:
MIN INT : constant - 2147483647;
MAX INT : constant 2147483647;
MAX DIGITS : constant 15;
MAX MANTISSA : constant := 31;
FINE DELTA : constant :=2.0**(-30)
TICK : constant : 0.0001o
-- Other System-Dependent Declarations
subtype PRIORITY is INTEGER range 0 .. 0;

end SYSTEM; ,,

4. Restrictions on Representation Clauses

'p, This version of the Siemens BS2000 Ada Compiler does not
support any representation clauses.

5. Conventions for Implementation-generated Names
Denoting Implementation-dependent Components in
Record Representation Clauses

Implementation-dependent components may be added to record
objects by the compiler. These components remain

-25 -

inoc=essible :or the user, i.e. they cannot be accessed via
implementation-generated names, in particular they cannot he

referred to in record renresentation clauses.

6. Interpretation of Expressions Appearing in Address
Clauses

The nresent version of the Siemens BS2000 Ada Comoiler does
not support address clauses.

7. Restrictions on Unchecked Type Conversions

The Siemens BS2000 Ada Compiler supports the generic func-
tion UNCHECKED CONVERSION with the following restriction:
The actual generic subtype corresponding to the formal gen-
eric type TARGET must not be an unconstrained array type,
and it must not be an unconstrained type with discriminants
that have no defaults. The instances gained from
UNCHECKED CONVERSION return a target value whose bit pattern
is a left-aligned copy of that of the source value. The
numbers of bits transferred corresponds to the size of the
target subtype. If the size of the source value is greater
than the size of the target subtype, then the source value
information is truncated on the right hand side, i.e. the
low order bits are ignored. If the size of the source value

is not greater than the size of the target subtype, then -

again - as many bits are transferred as corresponds to the
size of the target subtype, and no padding with zeroes,
spaces or other characters is performed.

8. Implementation-Dependent Characteristics of Input-Output
Packages

8.1 Conventions for NAME and FORM

External files are supported by the SAM, ISAM, PAM, EAM,
SYSDTA, S.SOUT and SYSLST BS2000 files where the value of
the parameter FORM determines which access method is
selected.

The set of allowable values of FORM is given below
together with the type of the BS2000 file corresponding
to it. Leading blanks and lower case letters are not allowed
in the FORM string.

value of FORM BS2000 access method

"SAM" Sequential Access Method
"ISAM" Indexed Sequential Access Method

"PAM" User Primary Access Method

- 26 -

"EX" Evanescent Access Mlethod
0!1, F" The EAM file referred to by the RS2000 JCT,

as the * file
"RDTA" The file (or terminal) associated with SYSDTA
,SOUT' The file (or terminal) associated with SYSOUT
'SLST The file (or printer) assnciated with SYSLST

Each input-output packaqe operates upon n sub-set of the
allowahle forms.

ScAM, ISAM and PAM files are identified by the value
of the parameter NAME of the CREATE and OPEN procedures
whose characters must conform to the RS2000 file naming
conventions as described below. The value of the parameter
NAME is ignored for other values of FORM. Note that the
ASCII characters in NAME are converted to EBCDIC within
the packages for the comparisons with BS2000 file and link
names.

The syntax associated with the string NAME is as follows:

HAME-syntax a:: linkname J file-name
File-name $ userid . name C . name I

$ adminname
name C . name)

link name name-character C name-character)
user _id ::= namecharacter C namecharacter)
adin-name . = name_character < namecharacter >
name : name character < name character >
namecharacter ::= upper_caseletter I digit

sprcial _character
special_character :: S I -

BS2000 imposes the following additional restrictions
upon the syntax of a NAME string.

1. The maximum length of a link name or a user id is
eight characters.

2. The maximum length of a file name starting with $
user id is 54 characters.

3. The maximum length of an admin name is 47 characters

unless it contains one or more periods in which
case the maximum length is 53 characters.

4. The maximum length of a file name starting with name
is 44 characters.

li

- 27 -

5. -he first character of a name must not he a
snecial character and the last character must not he a
hy-)hen

6. A file name must include at least one letter.

8.2 File management

This section describes the implementation restrictions which
apply to the sequential, direct and text input-output pack-
ages equally.

The maximum number of objects which may be stored in an
external file is dependent upon the maximum number of
records or the maximum number of blocks which may be
stored in its underlying BS2000 file. The values given
below state this maximum for each FORM provided that the
limits imposed by the system configuration are not oth-
erwise reached. For the direct and sequential innut-
output packages, each object is stored in a separate record
or block; for the text input-output package, each line is
stored in a separate record.

FORM Maximum Number of Records / Blocks

SAM configuration dependent limit
ISAM 99 999 999 records
PAM 16777 215 blocks
EAM 32 767 blocks
OM F 32 767 blocks
RDTA configuration dependent limit
SOUT configuration dependent limit
SLST configuration dependent limit

Two alternative record formats are available for ISAM
and SAM. files, varying and constant length. TEXT IO
always uses varying length records whereas DIRECT 10 and
SEQUENTIAL 10 support both formats. A varying length record
format is used if an instance of direct or sequential pack-
ages uses unconstrained element types. Otherwise a fixed
length record format is used where the length equals the
value of (ELEMENT TYPE'SIZE + 7) / 8 (that are the number of
bytes needed for this special type).

The maximum size of the objects which can be stored in an
external file is restricted. The universal integer value
which results from the application of the SIZE attribute to
every object accessed by the package must lie within a
range which is dependent upon the FORM and whether constant
or varying size records are being used. The exception
USEERROR is raised if this constraint is broken.

- 23 -

FORM record form OBlfC'CIZE (bits)

SAMI constant 1 (384

SAKI varying 16 352
ISAM constant 1 16 320
I SAM varvi nq I 16 283

PAK any object 1 16 384
EM'1 any object 16_334
OtIF any object 1 16 384
RDTA varying 1 2032
SOUT varying 1 2 032

SLST varying 1 2_032

SA, ISAM and PAM files are permanent files in that
their lifetimes are independent of the BS2000 tasks in
which they were created. Permanent files may be closed
in one BS2000 task and opened subsequently in the same or
another task without loss of their contents (for MODE
IN FILE or INOUT FILE).

When a SAM, ISAIM or PAM file (selected by the value of
NAME) is opened, there is no check that the form of
the BS2000 file corresponds to the value of the FORM
parameter of the OPEN procedure. There is also no check
that the io-package opening a SAM, ISAM, PAM, EAM, or OMF
file is the same package as the one which created the
file. If either of these conditions is not valid, the

program may deliver unexpected results.

EN'i and OMF files may be closed and reopened within
the same BS2000 program without loss of their contents (for k
MODE = IN FILE or INOUT FILE). Only one OMF file may be
created or opened in each RS2000 task.

T.he RDTA, SOUT and SLST files are unique within a BS2000
task. They can neither be created nor deleted.

No assumptions should be made about the way objects are
stored in the various BS2000 files except as described
for the TEXT 1O package. For examnle, the mapping of
indices onto ISAM keys may differ between different versions
of the input-output packages. Several internal files can be
associated with the same external file for reading only,
i.e. if all the internal files are opened with mode IN FILE.

8.3 SEQUENTIAL IO

The value of the FORM parameter of the CREATE and OPEN pro-
cedures is restricted to SAM, ISAM, PAM, EAM and O1IF, with
SAM being the default value.

The package SEQUENTIAL 10 cannot be instantiated with

I!

unconstraine1 array types and record t'ypes .ii th 1 i -;cr im-
inants without (lefaults.

8.4 DIRECT IO

The value of the FORM parameter of the CRFATE an1 OPEN oro-
cedures is restricted to ISAM, PAN-, EAM and OMwF, with TSA!
being the default value.

T.he declaration of COUNT reads:
type COUNT is range 0 .. INTEGER' LAST
Therefore, the value of an index may be set in the ranqe
1 .. INTEGER'LAST.

The package DIRECT TO cannot be instantiated with uncon-
strained array types and record types with discriminants

without defaults.

8.5 TEXT_I0

The value of the FORM parameter of the CREATE pro-
cedure is restriced to SAM and ISAM while the OPEN pro-
cedure may use SLST additionally. The default FORM parameter
is SAM.

The MODE of the SLST file is restricted to OUT FILE.

The standard input file has the form RDTA and the standard
output file has the form SOUT.

The ASCII characters passed across the interface
to/from the TEXT 10 package are converted to/from EBCDIC
characters within the TEXT 1O oackage; BS2000 files
created and updated by the TEXT IO package contain EBCDIC
characters.

The declaration of COUNT reads:I type C3UNT is range 0 .. INTEGER'LAST ;

The lines contained in text files are variable in length al
in the range l..500 characters: The declaration of the
subtype FIELD is given by:
subtype FIELD is INTEGER range 0 ..500I Lines are stored in the 2nd to 501st character of a

BS2000 variable length file record. The first character of
the record is a printer control character where ' I

means line-feed and 'A' page-feed. Thus BS2000 files
created by calls to TEXT 10 can be printed using the system

command procedure DO.PRINT or displayed using the EDOR and
EDT text file editors. The printer control characters are
used to implement the line and page terminators and canNJ

t"

.P _' '%A r,& '-A '. Ub PM~ 7L R hr dN _71V_.._W~V' V' .' ~ .~.VV '.~

- 30-

he ianioulated vlsin- the standard line and -aqe control oro-

The n .u sprograms which either make or d0 not make

test For a nage or file terminator are listed below:

Test for a paqe or file No test for a page or
terminator file terminator
FND OF FILE END OF LINE
E" D--OF-- PAGE GET CHtAR

E, LIGET INT
SKIP' PAGE GET-LINE

GET _STRING

SET COL

8.6 Low Level Input-Output

Low Level Input-Output as described in chapter 14.6 has not
been implemented.

9. Definition of a Main Subprogram

A library unit can be used as a main subprogram only if it
is a non-generic procedure which has no formal parameters.U.4

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make Ise of implementation-
dependent values, such as the maximum length of an input
line and invalid file names. A test that makes us.- of such
values is identified by the extension .TS- in its file nam2.
Actual values to be substituted are renresented by names
that begin with a dollar sign. A value must he substituted
for each of these names before the test is run. The values
used for this validation are given below.

Name andMean ing Value

$BIG IDI 239*'A' & '1'
Identifier of the size of the
maximum input line length with
varying last character.

$BIG ID2 239*'A' & '2'
Identifier of the size of the
maximum input line length with
varying last character.

SBIG ID3 120*'A' & '3' & 119*'A'
Identifier of the size of the
maximum input line length with
varying middle character.

$BIG ID4 120*'A' & '4' & 119*'A'
Identifier of the size of the
maximum input line length. with
varying middle character.

$BIq-INT LIT 237*'0 & '298"
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

$BIG REAL LIT 234*'01 & "69.OEI"
A real literal that can be
either of floating- or fixed-
point type, has value 690.0, and
has enough leading zeroes to be
the size of the maximum line
length.

$BLANKS 220*'

A sequence of blanks twenty
characters fewer than the size
of the maximum line length.

- 32-

SCr)II'!T IAST 2 147 483 647
A universal inteaer I iteral
whose value is TET IO.COUNTI,AST.

S..XT EN,1DED ASCII CHARS abcdefqhijklmnoqrstvwx,/z" &
A string literal cnntaininq all ascii exclam &
the ASCII characters with ascii dollar &

nrintable granhics that are not ascii-nercent &
in the basic 55 Ada character asc1 -query &
set. asciltat sian &

ascii r bracket
ascii back slash &
ascit. 1bracket &

ascii circumflex &
ascii grave &
ascii.1 brace &
ascii.r brace &
ascii tilde &

$FIELD LAST 500
A universal integer literal
whose value is TEXT IO. FIELD'LAST.

$FILE NAME WITH BAD CHARS BAD FILE NAME

An illegal external file name

that either contains invalid
characters, or is too long if no
invalid characters exist.

$FTLE NAME WITH WILD CARD CHAR WILD*FILE*NAME

An external file name that

either contains a wild card
character, or is too long if no
wild card character exists.

$GREATER THANDURATION 131_071.5
A universal real value that lies

between DURATION'BASE'LAST and
DURATION'LAST if any, otherwise
any value in the range of
DURAT ION.

$GREATER THAN DURATION BASE LAST 200 000.0
The universal real value that is
greater than DURATION'BASE'LAST,
if such a value exists.

$ILLEGAL EXTERNAL FILE NAMEI BADFILENAME
An illegal external file name.

$ILLEGAL EXTERNALFILENAME2 MUCH-TOO-LONG-FOR-A-CORRECT-

An illegal external file name BS2000-FILE-NAME
that is different from
$ILLEGALEXTERNALFILENAME.

- 33 -

e,

SINTLCER FIRqT -2147 413 647

The universal inteqer literal
ex:-.ression whose ,.'altie is
II'TEGER ' F IRST.

SINTF8GER, .LAST 2 147 483 647

The universal inteqer literal
expression whose vaIue i s
INTEGER' LAST.

SLESS THAN DURATION -131 071 .5
A universal real value that lies
hetween DURATION ' BASE' FIRST and
DURATION'FIRST j." any, otherwise
any value in the range of
DURATION.

$LESS THAN DURATION BASE FIRST -200 000.0
The universal real value that is
less than DURATION'BASE'FIRST,
if such a value exists.

$MAX DIGITS 15
The universal integer literal
whose value is the maximum
digits supported for
floating-point types.

$MAX IN LEN 240
7The universal integer literal
whose value is the maximum
inout line length permitted by
the implementation.

SMAX INT 2 147 483 647
The universal integer literal
whose value is SYSTEI.MAXINT.

$NAME longlong integer
A name of a nredefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGER,
LONG FLOAT, or LONG INTEGER
if one exists, otherwise any
undefined name.

$NEG BASED INT 8#37777777776*
T based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation

for SYSTEM.MAX INT. J,

- 34 -

~OIASCI I CHAR TYPE (non null)I
ATn enumerated type definition
for a character type whose
literals are the identifier
,ION NULL, and allI no)n-ASCII

characters with printable
graphics.

"I 1*41 .1 'p '.

i- , .a . . , -. , . 1-. W. , . - e,,w . .J,. ,.,- ,.., . .w. . ., .t -, -, a . V -- S.

- 35 -

APPENDIX D

WITHDRAWN TESTS

Some tests -ire w%,thdrawn from the ACVC because they dro not
conform to t'e Ada Standard. The followinq 19 tests had been
,ithdraw.n at the time of validation testing for the reasons

- indicited. A reference of the form "AI-ddddd" is to an Ada
Commenta ry.

C32114A: An unterminated string literal occurs at line
62.

* B33203C: 7ne reserved word "IS" is misspelled at line 45.
S%

* C34018A: The call of function G at line 114 is ambiguous
in the oresence of implicit conversions.

C35904A: The elaboration of subtype declarations SFX3 and
SFX4 may raise NUMERIC ERROR instead of CONSTRAINT ERROR
as expected in the test.

B3740]A: The object declarations at lines 126 through 135
follow subprogram bodies declared in the same declarative
part.

C41404A: The values of 'LAST and 'LENGTH are incorrect in
the if statements from line 74 to the end of the test.

B45116A: ARRPRIBL1 and ARRPRIBL2 are initialized with a
value of the wrong type -- PRIBOOL TYPE instead of

ARRPRIBOOL TYPE -- at line 41.

C48008A: The assumption that evaluation of default ini-
tial values occurs when an exception is raised by an
allocator is incorrect according to AI-00397.

B49006A: Object declarations at lines 41 and 50 are ter-
minated incorrectly with colons, and end case; is missing

from line 42.

B4AO10C: The object declaration in line 18 follows a sub-
program body of the same declarative part.

B741013: The beqin at line 9 causes a declarative part to
be treated as a sequence of statements.

C87B50A: The call of "/=" at line 31 requires a use
clause for package A.

', ',

- 36 -

C92005A: The "1=" for type PACK.BIG INT at line 40 is not
visible without a use clause for the Package PACK.

C940ACA: The assumption that allocated task TTl will run

prior to the main Program, and thus assign SPYNIUMB the
value checked- for by the main Program, is erroneous.

CA3005A..D (4 tests): No valid elaboration order exists

for these tests.

BC3204C: The body of B3C3204C0 is missing.

SI- .

.*~~ .. .~ .. .- .. .* .. .*

* Y ":y- - . ',1 .a

"",

.1i

"' I

::: "

""
..

r--

---,

II-

.

'.
"-
,',"-:S

,,,,,,
*-I

"...''. .,. '.,
',"-,.

, ", .''
i'- , '-],. .".,''.- - . '',",.'i".."'

- '

